

Rapid communication

Asp¹⁰ in Lys- γ_2 -MSH determines selective activation of the melanocortin MC₃ receptor

Julia Oosterom, J. Peter H. Burbach, Willem Hendrik Gispen, Roger A.H. Adan *

Rudolf Magnus Institute for Neurosciences, Medical Faculty, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, Netherlands

Received 25 June 1998; accepted 30 June 1998

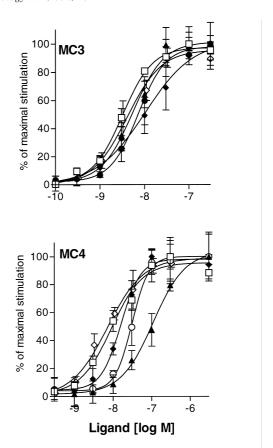
Abstract

The melanocortin MC₃ and MC₄ receptors are the main melanocortin receptors expressed in brain. Of the endogenous melanocortins, γ_2 -melanocortin stimulating hormone (MSH) selectively activates the melanocortin MC₃ receptor, whereas α - and β -MSH activate all melanocortin receptors. The aim was to gain an insight into the contribution of amino acids in positions 5 and 10 of melanocortins to the selectivity of [Nle⁴]Lys- γ_2 -MSH for the melanocortin MC₃ receptor versus the melanocortin MC₄ receptor. Introduction of Asp¹⁰ into [Nle⁴]α-MSH as in [Nle⁴,Gly⁵,Asp¹⁰]α-MSH selectively increased the EC₅₀ value for the melanocortin MC₄ receptor. Conversely, removal of Asp¹⁰, as in [Nle⁴,Gly¹⁰]Lys- γ_2 -MSH, selectively decreased the EC₅₀ value for the melanocortin MC₄ receptor. Thus, Asp¹⁰ in Lys- γ_2 -MSH determined selectivity for the melanocortin MC₃ receptor versus the melanocortin MC₄ receptor. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Melanocortin receptor; ACTH; MSH

The mechanisms underlying the diversity of effects of melanocortins on the brain are poorly understood. The melanocortin MC₃ and MC₄ receptors are the main melanocortin receptors expressed in brain (Low et al., 1994). Therefore, it is important to identify and design ligands that can discriminate between activation of the melanocortin MC₃ receptor versus that of the melanocortin MC_4 receptor. Of the endogenous melanocortins, γ_2 melanocortin-stimulating hormone (MSH) selectively activates the melanocortin MC₃ receptor, whereas α - and β-MSH activate all melanocortin receptors except the melanocortin MC₂ (adrenocorticotropic hormone: ACTH) receptor (Chhajlani and Wikberg, 1992; Mountjoy et al., 1992, 1994; Roselli-Rehfuss et al., 1993). α -MSH and Lys- γ_2 -MSH contain an identical core sequence, His-Phe-Arg-Trp, a Tyr residue on position 2 and a Met residue on position 4. It has been demonstrated that position 12 in α -MSH is critical for melanocortin MC₃/MC₄ receptor selectivity (Miwa et al., 1995). These latter authors demonstrated that substitution of Phe¹² for Pro¹² into

 γ_2 -MSH, as in α -MSH resulted in a 6-fold increase in melanocortin MC₄ receptor activity. However, the chemical nature of the amino acid residues at position 5 and 10 is very different, a negatively charged amino acid sidechain versus an uncharged side-chain, i.e., Glu⁵ and Gly¹⁰ in α -MSH versus Gly⁵ and Asp¹⁰ in Lys- γ_2 -MSH. To find to what extent these positions determine selective receptor activation, we tested α -MSH and γ_2 -MSH derivatives with exchanged amino acid residues on position 5 and 10 on in vitro activation of the melanocortin MC₃ receptor and the melanocortin MC4 receptor. To exclude an influence of peptide length, N- and C-terminal modifications and oxidation of the Met⁴ residue, we used synthetic [Nle⁴] α -MSH (Ac-Ser-Tyr-Ser-Nle-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-NH₂) and [Nle⁴]Ac-Lys- γ_2 -MSH-NH₂ (Ac-Lys-Tyr-Val-Nle-Gly-His-Phe-Arg-Trp-Asp-Arg-Phe-Gly-NH₂) as reference peptides (the latter will be referred to as [Nle⁴]Lys- γ_2 -MSH).


[N 1e 4] α -M S H , [N 1e 4 , G 1y 5] α -M S H , [N1e 4 , G1y 5 , Asp 10] α -MSH, [N1e 4] Lys- γ_2 -MSH and [N1e 4 , G1y 10] Lys- γ_2 -MSH were synthesized by solid phase Fmoc chemistry and purified as described by Schaaper et al. (1998). The products were analyzed using liquid chromatography-mass spectrometry (LC-MS). Ion spray mass spectrometry (MS) performed on a Micromass Quattro sq

 $^{^*}$ Corresponding author. Fax: +31-30-2539032; E-mail: adan@med.uu.nl

confirmed the expected molecular weights. The receptor activation assay makes use of the β -galactosidase (lacZ) gene fused to five copies of the cyclic AMP response element (CRE) to detect the activation of CRE-binding protein (CREB) resulting from increased intracellular cAMP and Ca²⁺ (Chen et al., 1995). Two hundred ninetythree human embryonal kidney (HEK) cells, expressing either the rat melanocortin MC₃ receptor (Roselli-Rehfuss et al., 1993) or the human melanocortin MC₄ receptor (Mountjoy et al., 1994), were grown in Dulbecco's modified Eagle's medium (DMEM, Gibco BRL) supplemented with 10% fetal calf serum. Approximately 7×10^6 cells were transfected with 7 µg of the pCRELacZ construct using the calcium phosphate precipitation method (Chen et al., 1995). Twenty hours after transfection 293 HEK cells were distributed into 96-well plates (Primaria). The next day agonist activity was measured by stimulation of the cells for 6 h with varying concentrations of peptides in DMEM supplemented with 0.5% bovine serum albumin, 25 mM HEPES (pH 7.4) and 50 μg/ml (150 kIU/ml) aprotinin (Sigma). After treatment, the cells were lysed in phosphate-buffered saline with 0.1% Triton X-100, frozen, thawed and assayed for β-galactosidase activity. Twelve data points for each peptide were measured in quadruplicate. EC₅₀ values were then calculated with a 95% confidence interval, using GraphPad Prism software (sigmoidal dose-response curve fitting, variable slope). The data are expressed as percentages of the maximal receptor activation under these assay conditions. The measurements were repeated at least three times with the same results. The aim of this study was to gain insight into the contribution of amino acids in positions 5 and 10 of melanocortins to the selectivity of [Nle⁴]Lys- γ_2 -MSH for the melanocortin MC₃ receptor versus the melanocortin MC₄ receptor.

When Glu⁵ of α-MSH was replaced by Gly⁵, as in Lys- γ_2 -MSH, the selectivity for the melanocortin MC₃ and melanocortin MC₄ receptors did not change significantly (Fig. 1). However, when an Asp¹⁰ as in Lys- γ_2 -MSH was also introduced in this peptide, as in [Nle⁴,Gly⁵,Asp¹⁰]α-MSH, affinity for the melanocortin MC₄ receptor decreased, whereas the affinity for the melanocortin MC₃ receptor remained unaffected. Conversely, when Asp¹⁰ in [Nle⁴]Lys- γ_2 -MSH was replaced by Gly¹⁰ as in α -MSH, the affinity for the melanocortin MC3 receptor was unaltered whereas that for the melanocortin MC₄ receptor increased 7-fold. Thus, we showed Asp¹⁰ in Lys- γ_2 -MSH to determine selectivity for the melanocortin MC₃ receptor versus the melanocortin MC₄ receptor. However, Asp¹⁰ probably does not interact directly with the melanocortin MC₃ receptor, since [Nle⁴,Gly¹⁰]Lys-γ₂-MSH has a potency similar to that of [Nle⁴]Lys- γ_2 -MSH for this recep-

The identification of Asp¹⁰ as selectivity-driving residue will allow the design of further peptides with enhanced melanocortin MC₃ receptor selectivity. These peptides could serve as essential tools to delineate the physiological

Ligand	MC ₃ receptor	MC ₄ receptor
[Nle ⁴]α-MSH	3.2 x10 ⁻⁹	9.1 x10 ⁻⁹
[Nle ⁴ , Gly ⁵]α-MSH	4.0×10^{-9}	7.2 x10 ⁻⁹
[Nle ⁴ , Gly ⁵ , Asp ¹⁰]α-MSH	7.1 x10 ⁻⁹	3.1 x10 ⁻⁸
[Nle ⁴]Lys-γ ₂ -MSH	5.4×10^{-9}	1.1×10^{-7}
[Nle ⁴ , Gly ¹⁰]Lys-γ ₂ -MSH	1.0 x10 ⁻⁸	1.6 x10 ⁻⁸

EC50 values [M] of melanocortin peptides on rat melanocortin MC3 and melanocortin MC4 receptors

Fig. 1. (a) Melanocortin MC_3 receptor activation by melanocortin peptides 293 HEK cells expressing the melanocortin MC_3 receptor were stimulated with various concentrations of $[Nle^4]\alpha$ -MSH (\Box) , $[Nle^4,Gly^5]\alpha$ -MSH (\diamondsuit) , $[Nle^4,Gly^5,Asp^{10}]\alpha$ -MSH (\diamondsuit) , $[Nle^4]Lys$ - γ_2 -MSH (\blacktriangle) or $[Nle^4,Gly^{10}]Lys$ - γ_2 -MSH (\clubsuit) . Data are expressed as percentages of maximal receptor activation (mean \pm S.D.). (b) Melanocortin MC_4 receptor activation by melanocortin peptides 293 HEK cells expressing the melanocortin MC_4 receptor were stimulated with various concentrations of $[Nle^4]\alpha$ -MSH (\Box) , $[Nle^4,Gly^5]\alpha$ -MSH (\diamondsuit) , $[Nle^4,Gly^5,Asp^{10}]\alpha$ -MSH (\bigcirc) , $[Nle^4]Lys$ - γ_2 -MSH (\blacktriangle) or $[Nle^4,Gly^{10}]Lys$ - γ_2 -MSH (\clubsuit) . Data are expressed as percentages of maximal receptor activation (mean \pm S.D.).

and pharmacological significance of the melanocortin MC_3 receptor. This study did not explain how Asp^{10} in $Lys-\gamma_2-MSH$ is able to recognize critically the melanocortin MC_3 receptor. This will require further analysis of the structural properties of the melanocortin MC_3 receptor in conjunction with $Lys-\gamma_2-MSH$ derivatives.

References

- Chen, W., Shields, T.S., Stork, P.J.S., Cone, R.D., 1995. A colorimetric assay for measuring activation of Gs and Gq coupled signaling pathways. Anal. Biochem. 226, 349–354.
- Chhajlani, V., Wikberg, J.E.S., 1992. Molecular cloning and expression of the human melanocyte stimulating hormone receptor cDNA. FEBS Lett. 309, 417–420.
- Low, M.J., Simerley, R.B., Cone, R.D., 1994. Receptors for the melanocortin peptides in the central nervous system. Curr. Opin. Endocrinol. Biab. 1, 79–88.
- Miwa, H., Gantz, I., Konda, Y., Shimoto, Y., Yamada, T., 1995. Structural determinants of the melanocortin peptides required for activation of melanocortin-3 and melanocortin-4 receptors. J. Biol. Chem. 273, 367–372.

- Mountjoy, K.G., Robbins, L.S., Mortrud, M.T., Cone, R.D., 1992. The cloning of a family of genes that encode the melanocortin receptors. Science 257, 1248–1251.
- Mountjoy, K.G., Mortrud, M.T., Low, M.J., Simerley, R.B., Cone, R.D., 1994. Cloning and functional characterization of a melanocortin receptor (MC4-R) localized in neuroendocrine and autonomic circuitry in the brain. Mol. Endocrinol. 8, 1298–1308.
- Roselli-Rehfuss, L., Mountjoy, K.G., Robbins, L.S., Mortrud, M.T., Low, M.J., Tatro, J.B., Entwistle, M.L., Simerly, R.B., Cone, R.D., 1993. Identification of a receptor for gamma melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc. Natl. Acad. Sci. USA 90, 8856–8860.
- Schaaper, W.M.M., Adan, R.A.H., Posthuma, T.A., Oosterom, J., Gispen, W.H., Meloen, R.H., 1998. Synthesis of cyclic α-MSH peptides. Letters in Peptide Science 5, 1–4.